GloBal TestNet Member's Methodology Comparison Charts January 2021 # Contents | 1. | Background | .3 | |--------------|---|--------| | 1. | Background | .3 | | 1.3 | | | | 2. | Water quality and preparation of challenge water during land-based testing | .4 | | 2. | 1. Water quality background at testing sites | . 4 | | 2.2 | 2. Adjustment of water quality parameters during testing | .6 | | 3. | Sampling procedures (Land based tests) | .8 | | 4. | Sampling procedures (Type Approval Ship-board tests) | 11 | | 5. | Sampling procedures (Commissioning tests) | | | 6. | Plankton analyses for land-based and ship-board testing | | | 6. | 1 Methods for counting and assessing viability | 16 | | 6.2 | Methods for counting and assessing viability | 18 | | List | of Tables & Figures | | | Tabl
Tabl | e 1: Summary of ambient water parameters in at different land-based test sites | 6
8 | | Figu | re 1: Examples how to measure the organism size. Red line maximum "body" dimension on smallest axis, green line minimum "body" dimension on the | 18 | ## Background #### 1.1. Introduction With our aim to promote comparable and accurate test results on the performance evaluation of technologies and methodologies to control the risk of bio-invasion and harmful species introductions by shipping. Global TestNet members have been sharing information on their testing approach and made these available to public. The present set of information was first compiled after the Annual meeting in Istanbul in 2012 ("the Istanbul paper") and has been updated over the course of the Global TestNet successive annual meetings and internal surveys. Improvement of methodologies applied by members as well as the development of new regulations has promoted an increased transparency in the testing protocols and the organisation is confident that this may be considered as "best practices" in ballast water sampling and testing. #### 1.2. Documentation regulating testing of ballast water management systems The testing carried out by the members is done according to the following documentation: - Guidelines for Approval of Ballast Water Management Systems (G8). Res. MEPC.174(58) & MEPC.279(70) - Procedure for Approval of Ballast Water Management Systems that Make Use of Active Substances (G9). Res. MEPC. 169(57) - U.S. Coast Guard. Standards for Living Organisms in Ships' Ballast Water Discharged in U.S. Waters. 33 CFR Part 151 and 46 CFR Part 162. - U.S. Environmental Protection Agency, Environmental Technology Verification Program. Generic Protocol for the Verification of Ballast Water Treatment Technology. EPA/600/R-10/146. - BWM2/Circ.70. Guidance for the commissioning testing of ballast water management systems (IMO) Test facilities are listed in all tables in alphabetical order. ## Water quality and preparation of challenge water during land-based testing #### 2.1. Water quality background at testing sites Different facilities face different test water conditions (Table 1). The differences are affected by, e.g., climate, river runoffs, urban influence and impact of resource users. These differences ensure that testing is done under "world-wide conditions" but at the same time this is also a challenge regarding test result comparability. Table 1: Summary of ambient water parameters in at different land-based test sites. | Test
Facility | Temp (°C) | Salinity
(PSU) | TSS (mg I ⁻¹) | POC (mg l ⁻¹) | DOC (mg I ⁻¹) | Organisms
≥ 50 μm m ⁻³ | Organisms
< 50 µm and
≥ 10 µm ml ⁻¹ | Bacteria ml ⁻¹ | |------------------------------|----------------|-------------------|---------------------------|---------------------------|---------------------------|--------------------------------------|--|--------------------------------| | DHI (DK) | Variable | 0 – 33 | variable | > 5 | > 10 | variable | variable | variable | | GBRC
(USA) | 9-22 | 0-28 | 20-100+ | 0.5-2 | 2-10 | 25,000-1,000,000+ | 100-1,300 | > 1,000 | | GSI (USA) | 9 – 22 | 0 – 1 | 2 – 21 | < 1 | 6 – 22 | 100,000 - 3,000,000 | 25 - 1,200 | > 1,000 | | KIOST
(RoK) | 2.58 –
30.3 | 18.5 -
34.0 | 6.00 - 51.2 | 0.3 – 9.21 | 0.3 – 4.49 | 326 – 663,246 | 36 – 11,340 | 0.2 – 12.7 x 10 ⁶ | | KOMERI ¹
(RoK) | 4 - 28 | 0 - 33 | Variable | Variable | Variable | 1,000 - 500,000 | 100 - 3,000 | 40 - 14,634
1,000 - 800,000 | | MBRIJ
(Japan) | 9 – 23 | 31 – 34 | 1 – 10 | <0.1 – 2 | 1 – 2 | 10,000 – 300,000 | <1 – 200 | 10,000 - 500,000 | | MEA-nl
(NL) | <1 – 25 | <1 – 35 | 15 – 600 | 1 - > 6 | 2 - >6 | 10,000 – 400,000 | 500 – 4,000 | 105 - 107 | | MERC ²
(USA) | 4 – 30 | 0 – 28 | 3 – 60 | 1 – 8 | 1 - 8 | 80,000 - 1,000,000 | 500 - 30,000 | 10,000 -
10,000,000 | | MRDTC
(Japan) | 8 – 25 | 31 – 34 | 5 – 11 | <0.1 – 1.7 | 1.0 – 1.5 | 5.8 x 103 – 5.3 x
105 | variable | variable | ¹ For the test, water quality used by KOMERI have a wide range. The challenge water is used the natural seawater and fresh waters. The seawater is directly supplied in a nearby sea using the pump, and natural fresh water is indirectly supplied in a nearby river using a tank lorry. For the challenge water, natural viable or living organisms is collected by mechanical concentration method. ² Three different locations, within the Chesapeake Bay, with distinct natural biological communities. | Test
Facility | Temp (°C) | Salinity
(PSU) | TSS (mg l ⁻¹) | POC (mg I ⁻¹) | DOC (mg I ⁻¹) | Organisms
≥ 50 µm m ⁻³ | Organisms
< 50 µm and
≥ 10 µm ml ⁻¹ | Bacteria ml ⁻¹ | |--------------------------|-----------|-------------------|---------------------------|---------------------------|---------------------------|--------------------------------------|--|---------------------------| | NIOZ
(NL) | Variable | 20 - 34 | 5 – 400 | 5 – 20 | 1 – 5 | 10,000 - 1,000,000 | 100 – 100,000 | 10,000 –
10,000,000 | | NIVA
(Norway) | 4 – 25 | 0 – 34 | 1-10 | 1-3 | 1-3 | 50,000 - 300,000 | 500 – 4,000 | >10 ³ | | NRL
(USA) | 20 – 32 | 35 – 41 | 1 – 5 (MM) | 2 – 4 | 2 – 4 | 50,000 - 180,000 | ca. 10 – 200 | 105 - 107 | | SWBWTCS
(China) | 16 – 22 | 32 – 33 | 1 – 5 | ca. 5 | ca. 2 | standard met | 50 % of standard | standard met | | WMR ³
(NL) | 0-25 | 0-30 | 1-50 (MM) | 2-6 | 2-15 | 10 ⁵ - 10 ⁶ | 500-4000 | variable | ³ Wageningen Marine Research = WMR, formerly known as IMARES. ## 2.2. Adjustment of water quality parameters during testing IMO and USCG require certain water conditions to challenge ballast water management systems. Some conditions need to be manipulated to meet these requirements. Table 2 shows what test facilities do to meet the challenge water conditions. Table 2: Additives used and methodologies used for challenge water | Test
facility | Manipulation of water parameters | Use of Standard Test
Organisms (STO) | % of STO | Test tank
mixing
during
hold time | Test soup application | |------------------|---|---|--|--|--| | DHI (DK) | + | Artemia sp, Tetraselmis sp | Up to 90% | + | 1000 I and injected | | GBRC | Ligno Sulfonate,
Sodium Citrate, Corn
starch, Kaolin clay | Ambient phytoplankton grow-out. Ambient zooplankton concentration. Various species. | Up to 90% phytoplankton (ambient organisms). Typically 0% zooplankton. | Air lift in
source
tank | Organisms mixed into source tank. Water quality 1,000 I injection into uptake water. | | GSI | + | + | Up to 90 % | + | Injection separate per organisms and water parameters | | Japan | + | Artemia sp, Tetraselmis sp | Up to 100% | + | 500 l, 1 x zoos, 1 x phyto | | KIOST | Glucose, Starch,
Silica | Artemia sp, Tetraselmis sp | 50 to 90% | + | 230 m³ and/or 430 m³, i.e.
used directly for test (runs
tests sequentially) | | KOMERI | Carbon | No. We used only Natural organism | 0 | Agitation and/or bubbling | Depends on natural condition (normally 3-30 m ³) | | MBRIJ
Japan | Carbon, TSS | Brachionus
rotundiformis,Tetraselmis
sp. Synchaeta sp. Rotaria
sp. and Scenedesmus sp. | Up to 90 % | Bubbling | 1000 l injected | | Test
facility | Manipulation of water parameters | Use of Standard Test
Organisms (STO) | % of STO | Test tank
mixing
during
hold time | Test soup application | |------------------|---|--|--|--|---| | MEA-nl | Carbon lignin/citric acid | Artemia sp (incidentally) | Occasionally up to 20%, otherwise none | + | Injection | | MERC | + | - | - | + optional | 1000 I injected | | NIOZ | + (only TSS) | - | - | + | 500 I, injection prior treatment system | | NIVA | Lignine Sulfonate,
Sodium Citrate, Corn
starch, Kaolin clay | Artemia sp, Tetraselmis sp Chlamydomonas sp. | Up to 50% | + | 500-800 m³, i.e. used directly for test | | WMR | TSS (MM), POC,
DOC, Salinity above
30 psu | Natural (local)
communities | Up to 50 %
(usually zero) | + | Feed Tank >700 m ³ | ## Sampling procedures (Land based tests) Table 3: Sampling details, <u>land-based tests</u> for the discharge of treated water, organisms above 50 micron in minimum dimension. | Facility | Sampling
point
location | OET or sequences | Sample port | Volume | Duration
sample
collection | Method | Concentrated
sample
volume | Second
concentrated
sample
volume | % of sample volume analysed | Max time
concentrated
sample
storage | Time end
of
collection
to end of
analysis | |----------|-------------------------------|--|---|--|----------------------------------|--|----------------------------------|--|---|---|---| | DHI (DK) | In-line | | | | | | | | | | | | GBF | In-line | OET | G2-isokinetic,
Pitot-tube,
1 sampling
point, use
flow splitter
for 3 parallel
samples | > 1000 L
(3 samples) | Ca 2
hours | | 400 ml | 60 ml | 100 | < 1.5 hours | < 1.5
hours | | GSI | In-line | OET | G2-isokinetic,
Pitot-tube,
2/3 sampling
point | > 3000 L
(3 samples) | Up to 1
hour | | 1000 ml | Organism density dependent (or dilution) | 100 % or
counts at
least xx
orgs | < 2 hours | < 2 hours | | Japan | In-line | 3 sequences | G2-isokinetic,
Pitot-tube,
3 sampling
point | > 1000 L
(for each
sequence) | > 1 hour | | > 500 ml | - | 100 | 5 mins | < 6 hours | | KIOST | In-line | OET divided
in 3, or
continuous
sequences | G2-isokinetic,
Pitot-tube,
1 sampling
point | > 1000 L
(3 samples)
or max.
7ton | Ca. 1 hour | 35 µm
(diagon
al size),
1L
contain
er | 1000 ml | 100 ml | 100 | < 2 hours | < 2 hours | | Facility | Sampling
point
location | OET or sequences | Sample port | Volume | Duration
sample
collection | Method | Concentrated sample volume | Second
concentrated
sample
volume | % of sample volume analyse d | Max time
concentrated
sample
storage | Time end
of
collection
to end of
analysis | |----------------|-------------------------------|---------------------------------------|--|---|---|--|--|--|--|---|---| | KOMERI | In-line | Continuous | G2-isokinetic,
Pitot-tube,
one sampling
point | 10,000 to
15,000 L
[1,000 L, 3
samples
are also
available] | Ca. 1 hour | 30 µm
(diagon
al) | ≥ 3,000 ml
[1,000 ml, 3
samples are
also available] | 1,000 ml
(final)
[20-100 ml is
also avalable] | Accordin
g to EPA
ETV
Protocol
4 | < 2 hours | < 2 hours | | MBRIJ
Japan | In-line | OET divided in 3 continuous sequences | G2-isokinetic,
Pitot-tube,
3 sampling
point | > 1000 L
(for each
sequence) | > 1 hour | | > 500 ml | 10-50 ml | 100 | < 30 mins | < 6 hours | | MEA-nI | In-line | 3 continuous sequences | G2-isokinetic,
Pitot-tube,
1 sampling
point | > 3000 L
as >3 *
>1000 L
time-
integrated
samples | Whole
treatment
time period | | < 500 ml | Organism
density
dependent
(or dilution) | 100 %
for
treated | < 6 hours | < 6 hours | | MERC | In-line | OET
consistent
with ETV | G2-isokinetic,
Pitot-tube,
1 sampling
point | > 7000 L
for treated
discharge
and 3000 L
for others | 1 to 2 hours
depending
on flow rate | | | | 100 | < 2 hours | | | NIOZ | In-line | OET divided in 3 continuous sequences | G2-isokinetic,
Pitot-tube,
1 sampling
point | > 1000 L
(for each
sequence) | Ca. 1 hour | | 250-750 ml | - | 100 | 2-4 hours | < 6 hours | | NIVA | In-line | >3
continuous
sequences | G2-isokinetic,
Pitot-tube, 2
sampling
ports | > 1000 L
(3
consecutiv
e samples) | >3x 6-15
mins per
sample | Nets
35µm in
1m3
samplin
g tanks | 100 ml | - | 100 | 5 mins | < 2-6
hours | ⁴ US EPA ETV Protocol, Generic protocol for the verification of ballast water treatment technology (EPA/600/R-10/146, September 2010) | Facility | Sampling
point
location | OET or sequences | Sample port | Volume | Duration
sample
collection | Method | Concentrated sample volume | Second
concentrated
sample
volume | % of sample volume analyse d | Max time
concentrated
sample
storage | Time end
of
collection
to end of
analysis | |----------|-------------------------------|---------------------------------------|--|-----------------------------|----------------------------------|---|---------------------------------|--|------------------------------|---|---| | NRL | In-line | OET | G2-isokinetic,
Pitot-tube,
1 sampling
point | > 1000 L
(5 to 10
m³) | Ca. 1 hour | | 1000 ml | 500 ml | 100 | < 6 hours | < 5 hours | | WMR | In-line | OET divided in 3 continuous sequences | G2-isokinetic,
Pitot-tube,
1 sampling
point | 3x1000 L | Ca. 50 mins | Collect
3000 L
sample,
sieved
(50µm)
and
concentr
ated | 3x200 ml
(sample
storage) | - | 100 | < 6 hours | < 6 hours | ## Sampling procedures (Type Approval Ship-board tests) Table 4: Sampling details, ship-board tests for the discharge of treated water, organisms above 50 micron in minimum dimension. | Facility | Sampling point location | OET or sequences | Volume | Duration
sample
collection | Concentrated sample volume | Second
concentrated
sample
volume | % of sample volume analysed | Max time
concentrated
sample
storage | Time end of collection to end of analysis | Flowmeter | Method
details | |--------------------------------|-------------------------|-------------------------|---|--|----------------------------|--|-----------------------------|---|---|--|---| | David
Consult
(Slovenia) | In-line | (OET or) 3
sequences | > 1000 L
(3 OET
samples
in parallel
or 1
sequence
in each
beginning,
middle
and end) | Dependent
on vessel
specifics ,
typically 30
mins to 1
hour | 250 ml | 100 ml | 20-100 | 15-60 mins | < 6 hours | Flowmeter
capacity 20-
200 L/min | 50 µm mesh
(diagonal
dimension)
in a
sampling bin
of ca. 200 L
capacity | | DHI (DK) | In-line | OET | > 1000 L
(3
samples) | Dependent on vessel specifics | 1000 ml | | 100 | 2 hours | < 6 hours | | | | GBRC | In-line | OET | > 1000 L
(3
samples) | Ca 2 hours | 400 ml | 60 ml | 100 | < 1.5 hours | < 1.5 hours | | | | GoConsult
(Germany) | In-line | (OET or) 3
sequences | > 1000 L
(3 OET
samples
in parallel
or 1
sequence
in each
beginning,
middle
and end) | Dependent
on vessel
specifics ,
typically 30
mins to 1
hour | 250 ml | 100 ml | 20-100 | 15-60 mins | < 6 hours | Flowmeter
capacity 20-
200 L/min | 50 µm mesh
(diagonal
dimension)
in a
sampling bin
of ca. 200 L
capacity | | GSI | In-line | Pending | > 1000 L
(3
samples) | Dependent
on vessel
specifics | 1000 ml | Organism
density
dependent | 100 % or counts at | < 2 hours | < 2 hours | | | | Facility | Sampling point location | OET or sequences | Volume | Duration
sample
collection | Concentrated sample volume | Second
concentrated
sample
volume | % of sample volume analysed | Max time
concentrated
sample
storage | Time end of collection to end of analysis | Flowmeter | Method
details | |----------|-------------------------|---|--|---|----------------------------|--|-----------------------------|---|---|--|--| | | | | | | | (or dilution) | least xx
orgs | | | | | | Japan | In-line | 3
sequences | > 1000 L
(9
samples) | Dependent
on vessel
specifics,
typically 20
min | > 500 ml | - | 100 | Ca. 15 mins | < 6 hours | | | | KE,Japan | In-line | Beginning,
middle, end | >1000L (9 samples) | Dependent
on vessel
specifics,
typically 10
to 30 min | <1000ml | 100ml | 100 | <30mins | < 6 hours | | | | KIOST | In-line | Beginning,
middle,
end,
uncontinou
os | > 1000 L
(9
samples) | Dependent
on vessel
specifics,
typically ca.
1 hour | 1000 ml | 100 ml | 100 | < 1 hour | < 6 hour | | | | KOMERI | In-line | Beginning,
middle,
end, semi-
continouos | 3,000 L (3 samples)
[1,000 L x 9 samples] | Dependent
on vessel
specifics,
typically ca.
1 hour | 1000 ml | 20 - 100 ml | 100 | < 1 hour | < 5 hours | | | | MBRIJ | In-line | 3
sequences | > 1000 L
(9
samples) | Dependent
on vessel
specifics ,
typically 4 to
10 min | > 500 ml | 50 ml | 100 | < 30 mins | < 6 hours | Flowmeter
capacity 20-
250 L/min | Used of 50 µm mesh (diagonal dimension) net in a sampling plastic buckets (70 L capacity). | | Facility | Sampling point location | OET or sequences | Volume | Duration
sample
collection | Concentrated sample volume | Second
concentrated
sample
volume | % of sample volume analysed | Max time
concentrated
sample
storage | Time end of collection to end of analysis | Flowmeter | Method
details | |-------------------------|-------------------------|--|--|---|----------------------------|---|-----------------------------|---|---|---|--| | MEA-nl | In-line | 3
sequences
(OET) | > 3000 L
(3
samples) | Depends on
ship. Min 1
hour | < 500 mL | | 100 % for treated | < 6 hours | < 6 hours | | 50 µm mesh
(diagonal
dimension)
in a
sampling bin | | MERC | In-line | OET | 1000 to
3000 ml | Dependent on vessel specifics | | | 100 | < 2 hours | < 6 hours | | | | NIOZ | | • | | | | No ship-board te | ests | • | • | • | 1 | | NIVA | In-line | > 3
successive
continuous
sequences | > 1000 L
(>3-9
samples) | Dependent
on vessel
specifics
typically 10
mins per
sequence | 100 ml | - | 100 | <2 hours | < 6 hours | flow
measuremen
t with or
without
flowmeter | Plankton
nets 35 μm | | NRL | | | | | | No ship-board te | ests | | | | | | PML
Application
s | In-Line | OET | >1000L
broken
into 10
minute
sub-
samples | Dependent on vessel | 100ml | Organism
density
dependent
(or dilution) | | <2 hours | <2 hours | Flowmeter
capacity 20-
200 L/min | 50 µm mesh
(diagonal
dimension) in
a sampling bin
of ca. 100 L
capacity | | WMR | | 1 | 1 | 1 | I | No ship-board te | ests | | 1 | | | ### Sampling procedures (Commissioning tests) Table 5. Sampling details, commissioning tests for the discharge of treated water, organisms > 50 micron, 10 – 50 micron, and <10 micron | Facility | OET* or
Sequences | Sampling
approach
(open nets or
closed
sampler) | Flow
meter
position
(before or
after
sampling) | Duration of
Sample
Collection | Total
Volume
Sampled
(>50um) | Indicative
method used | Detailed method used | Time used
between
sampling
and
analyses | |-------------------------------------|----------------------|---|---|-------------------------------------|---------------------------------------|---------------------------|--|---| | Ankron Water | OET (If | Open Net | Before | < 1 hour | ≥ 3 m ³ | ATP | > 50 µm: Microscopy | Immediate | | Services GmbH | possible) | | sampling | | | PAM
flourometry | 10-50 μm: FDA/CMFDA | | | DHI | | | | | | | < 10: E.coli, Enterococcus,
Cholera | | | | Sequence | Open net | Before | < 1 hour | 2 x 350- | 10-50 μm | >50 µm: Microscopy | <6 hr | | | Sequence | Sample container | sampling | | 500 L | | 10-50 μm: FDA/CMFDA | <6 hr | | | Sequence | Sample container | | | | | < 10: E.coli, Enterococcus,
Cholera | <24 hr | | Golden Bear | OET | Open net | Before sampling | < 1 hour | ≥ 3 m ³ | | > 50 µm: Microscopy | < 2 hr | | Resaerch Center
(GBRC) | Sequence | Sample container | | | | | 10-50 μm: FDA/CMFDA | < 2 hr | | | Sequence | Sample container | | | | | < 10: E.coli, Enterococcus,
Cholera | < 24 hr | | KOMERI | OET | Open net | Before | > 30 minutes | ≥ 3 m ³ | ATP | > 50 µm: Microscopy | < 2 hr | | (Korea Marine | | | sampling | | | | 10-50 μm: FDA/CMFDA | | | Equipment
Research
Institute) | | | | | | | < 10: E.coli, Enterococcus,
Cholera | | | MEA-nl | OET | Open net | Before
sampling | Whole operation | ≥ 3 m ³ | PAM
flourometry | >50 µm: Microscopy | < 6 hr | | | Sequence | Sample container | | | | , | 10-50 μm: FDA/CMFDA, Flow Cytometry | < 6 hr | | | Sequence | Sample container | | | | | < 10: E.coli, Enterococcus,
Cholera | < 6 hr | | Facility | OET* or
Sequences | Sampling
approach
(open nets or
closed
sampler) | Flow
meter
position
(before or
after
sampling) | Duration of
Sample
Collection | Total
Volume
Sampled
(>50um) | Indicative
method used | Detailed method used | Time used
between
sampling
and
analyses | |------------------|---|---|---|---|---------------------------------------|-----------------------------------|---|---| | PML Applications | OET (sample @ beginning, middle & end of one tank discharge | Open Nets | Before
sampling | Uptake Sample:
10 min. during
uptake; Discharge
Sample: 3 x 10
min. | 1.5 m³ | | >50 µm: Microscopy 10-50 µm: FDA/CMFDA <10: E.coli, Enterococcus, Cholera | Immediate | | SGS | Continuous,
in line
sampling /
isokinetic | Closed
sampler SGS
BWS 1 | Flow meter
installed
after the
sampler | < 1 hour | 1-3 m³ | ATP ATP and/orPAM fluorometry ATP | > 50 µm: Microscopy 10-50 µm: FDA/CMFDA < 10: E.coli, Enterococcus, | < 6 hr
< 6 hr | ^{*} OET: Over Entire Pumping Time ### Plankton analyses for land-based and ship-board testing ## 6.1 Methods for counting and assessing viability Table 6: Methods for counting organisms and viability assessment. | Test
facility | Greater than 50 μm | 10 – 50 μm
Concentration (C)
No Concentration (NC) | Counts | Resting stages | |------------------|--|---|---------------------------------------|---| | David
Consult | Organism movement, organism integrity, poking | (C and preferably NC) FDA/CMFDA stain | Epi-fluorescence microscopy | Rarely encountered, if found numbers noted | | DHI (DK) | Movement, poking | (NC) FDA/CMFDA, MPN and Lugol's samples | Microscope
Fluorescence for MPN | Counted, viability assessment not always possible | | DHI (SG) | Movement, poking | (NC) FDA/CMFDA, MPN and Lugol's samples | Microscope
Fluorescence for MPN | Rarely encountered Not counted | | GBRC | Movement, poking | (NC) FDA/CMFDA, MPN and Lugol's samples, other corroborative assays (e.g. flow cytometry, PAM, BWI) | Microscope
Fluorescence for MPN | Rarely encountered
Not counted | | GoConsult | Organism movement, organism integrity, poking | (C and preferably NC) FDA/CMFDA stain | Epi-fluorescence microscopy | Rarely encountered, if found numbers noted | | GSI | Response to stimulus (poking, light), Lugol's preserved samples | (C) FDA stain, Lugol's preserved samples | Microscope | No viability assessment, counted | | Japan | Organism movement, organism integrity, poking | (C) Organism movement, organism intergrity | Microscope | Incubation (not used yet) | | KE,Japan | Movement with poking | (C and NC) Cell integrity, Organism movement | Microscope | Incubation with light for a few days | | KIOST | Organism integrity, stain (Neutral Red), poking | (C and NC) Growth experiments, FDA stain, FDA + CMFDA-stain, organism movement | Microscope | Not looked at | | KOMERI | Organism integrity, stain (Neutral Red), poking. Direct count and judge as living cell for all egg stage | (C and NC) Growth experiments, FDA/CMFDA-stain, organism movement, MPN. | Microscope,
Fluorescent microscope | Not looked at, All egg stages are counted as living cells | | Test
facility | Greater than 50 μm | 10 – 50 μm
Concentration (C)
No Concentration (NC) | Counts | Resting stages | |---------------------|---|---|--|--| | MBRIJ | Movement, stain (Neutral Red) | (C and NC)
stain (Neutral Red or FDA/CMFDA), Movement, Growth
experiments (MPN) | Nomal-microscope and Fluorescence-microscope | Incubation(Zooplankton eggs and Phytoplankton cyst) | | MEA-nI | Organism movement, organism integrity, poking | (C and NC) Stain (C, live/dead stains, i.e. (CM)FDA), photosynthetic efficiency/ biomass (phytoplankton NC), direct counts phytoplankton (flow cytometry) Regrowth and MPN (NC)) 4 * concentrated; for PAM automated unconcentrated | Epi-fluorescence
microscopy, flow
cytometry Active
fluorometry
(phytoplankton),
Standard Microscopy | rarely encountered, will be visible during regrowth | | MERC | Movement with poking (ETV) | (C and NC) FDA+CMFDA stain (ETV), fixed (Lugol's) samples for archiving samples, QA/QC | Microscope | Optional - extended observations for recovery and movement, egg hatching, and FDA+CMFDA staining for large diatoms | | NIOZ | Neutral red, chloroplast, integrity of cell, poking | (C and NC) Stain (live/dead stains, i.e. Sytox Green), photosynthetic activity, minimum theoretical number (20 day experiment) | Automatic counting equipment | Incubation | | NIVA | Movement, poking | (NC)
FDA/CMFDA, MPN | Microscope | (Not seen any) | | PML
Applications | Organism movement, organism integrity, poking | FDA/CMFDA stain, fixed (Lugol's) samples for archiving samples (NC) | Std Microscopy & Epi-
fluorescence
microscopy | Rarely encountered, if found numbers noted | | SGS | Organism movement, organism integrity, poking | (NC)
FDA/CMFDA | Std Microscopy & Epi-
fluorescence
microscopy | (Not seen any) | | WMR | Movement, cell integrity, poking (recovery) | (NC) cell integrity, stain, MPN | Microscope | Incubation with light for a few days | ### 6.2 Sizing of organisms There are two fundamentally different principles to identify the minimum dimension. One way to do this is to measure the maximum width of the smallest visible axis of the organism excluding cilia, spikes and appendages. In the other approach the smallest dimension of the smallest visible axis is measured. For organisms forming chains and colonies, single cells are measured and counted. Figure 1: Examples how to measure the organism size. Red line maximum "body" dimension on smallest axis, green line minimum "body" dimension on the smallest axis and blue line maximum dimension in length of the organism. Table 7: Method used to measure minimum dimension. | Test facility | Minimum dimension measurement | Test
facil | | Minimum dimension measurement | |------------------|---|---------------|----------|--| | David
Consult | Minimum size on the smallest visible axis | KON | • | Minimum dimension of main body on the latitudinal axis. Transapical (main body) axis width | | DHI (DK) | | MBF | RIJ | Minimum size on the smallest visible axis | | DHI (SG) | Maximum size on the smallest visible axis | MEA | ۱-nl | Measuring size and size fractionation, flow cytometry | | GBRC | Maximum size on the smallest visible axis | MEF | SC . | Maximum size on the smallest visible axis | | GoConsult | Minimum size on the smallest visible axis | NIO | Z | | | GSI | Maximum size on the smallest visible axis | NIV | 4 | Minimum size on the smallest visible axis | | Japan | | PML
Appl | ications | Minimum size on the smallest visible axis | | SGS | Maximum size on the smallest visible axis | | | | | KIOST | Minimum size on the smallest visible axis | WMI | ₹ | Maximum size on the smallest visible axis |